NASA/TP—1999-208852

Launch Collision Probability

Gary Bollenbacher and James D. Guptill
Glenn Research Center, Cleveland, Ohio

September 1999



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA'’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

+ TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

+ TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

» CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

» SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

+ TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

» Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

« E-mail your question via the Internet to
help@sti.nasa.gov

» Fax your question to the NASA Access
Help Desk at (301) 621-0134

» Telephone the NASA Access Help Desk at
(301) 621-0390

*  Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076



NASA/TP—1999-208852

Launch Collision Probability

Gary Bollenbacher and James D. Guptill
Glenn Research Center, Cleveland, Ohio

National Aeronautics and
Space Administration

Glenn Research Center

September 1999



Available from

NASA Center for Aerospace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076 Springfield, VA 22100

Price Code: A03 Price Code: A03



Contents

SUMIMIANY . . oottt e e e e e e e e e e e e e e e e e e e e e e 1
I OUCTION . . oo e e e e e 1
Relative Motion Coordinate SysStem . . ... .. e 3
Probability Of ColliSion . . ... e e 4
APPIOAC L o e e 4
APPIOAC 2 o e e 8
Accuracy of Probability EQUation . . . . ... e e 13
DISCUSSION Of RESUIS . . . . . e e e e 16
Application of Results to Collision Avoidance (COLA) AnalySis . .. ... e 18
Collision Avoidance Analysis With Unknown Covariance Matrices . ................c.tiiii it mmnnnna. 18
Alternative Approaches to Computing Probability . . ..... .. ... e 19
SumMmary Of REeSUIS . .. .o e 20
Appendixes
A—Application of Probability Analysis to Cassini MiSSion ... ...... ... ... e i 21
B—SYMbDOIS . . . 26
RETEIENCES . . oo e e 28

NASA/TP—1999-208852 iii



Launch Collision Probability

Gary Bollenbacher and James D. Guptill
National Aeronautics and Space Administration
Glenn Research Center

Cleveland, Ohio 44135

Summary risk is unacceptable for some payloads, such as the Cassini
spacecraft.

This report analyzes the probability of a launch vehicle Cassini was launched by a Titan IV/Centaur rocket on an
colliding with one of the nearly 10 000 tracked objects orbiting interplanetary trajectory at the window opening on October 15,
the Earth, given that an object on a near-collision course with1997. The trajectory will take the Cassini spacecraft to Saturn
the launch vehicle has been identified. Knowledge of theviatwo Venus, an Earth, and a Jupiter gravity assists. Itis a one-
probability of collision throughout the launch window can be of-a kind, high-cost spacecraft equipped with three radioiso-
used to avoid launching at times when the probability of tope thermoelectric generators fueled by 32.7 kg of the
collision is unacceptably high. The analysis in this report nonweapons grade isotope plutonium—-238 dioxide. In addi-
assumes that the positions of the orbiting objects and the launction, Cassini employs 117 lightweight radioisotope heater
vehicle can be predicted as a function of time and therefore thatnits, each containing 2.7 g of the same plutonium dioxide
any tracked object which comes close to the launch vehicle cafsotope. A collision with an orbiting space object would not
be identified. The analysis further assumes that the positioronly cause a loss of mission but would also risk the release of
uncertainty of the launch vehicle and the approaching spacglutonium into the upper atmosphere.
object can be described with position covariance matrices. To mitigate even the small risk of collision associated with
With these and some additional simplifying assumptions, alaunching at an arbitrary time within the daily launch window,
closed-form solution is developed using two approaches.  a decision was made approximately 1 year before launch to

The solution shows that the probability of collision is a require a collision avoidance analysis (COLA) that would be
function of position uncertainties, the size of the two potentially performed prior to the opening of each daily launch window.
colliding objects, and the nominal separation distance at thel'he analysis would examine the entire daily launch window
point of closest approach. The impact of the simplifying and determine the launch times that resulted in an unacceptable
assumptions on the accuracy of the final result is assessed amtential for collision with any tracked object. Launch would
the application of the results to the Cassini mission, launched imot be attempted at any time for which an unacceptable poten-
October 1997, is described. Other factors that affect the probtial for collision was identified. This mission assurance COLA,
ability of collision are also discussed. Finally, the report offers as it is sometimes called, was in addition to the safety COLA
alternative approaches that can be used to evaluate the probahihat is performed at the Eastern Range for all launches to protect
ity of collision. orbiting manned objects or objects capable of being manned.

Mission assurance COLA analyses are routinely conducted

by the Air Force for all Titan IV/Centaur launches. However,

Introduction prior to the Cassini mission, the existing capability for COLA
analyses was limited to the coast phases of a single, time-

Nearly 10 000 tracked objects are orbiting the Earth. Thesanvariant trajectory, which was inadequate for the Cassini
objects encompass manned objects, active and decommisgnission. The Cassini trajectory, unlike most Air Force mis-
sioned satellites, spent rocket bodies, and debris. They ranggions, was a function of time into the window at which liftoff
from a few centimeters in diameter to the size of the MIR Spaceoccurred. Additionally, the Cassini trajectory had a very long
Station. Their tracking and cataloging is the responsibility of second Centaur burn, during which it passed through a region
the U.S. Air Force¥Command and Control Squadron (CACS) of space densely populated by space objects. To remedy these
at Cheyenne Mountain located in Colorado Springs, Coloradoshortcomings, the Air Force developed new mission assurance

When a new satellite is launched, the launch vehicle with itsCOLA analysis software to satisfy NASA-defined require-
payload attached passes through an area of space where the@sents. These requirements were to perform a seamless COLA
objects orbit. Although the object population density is low, analysis from Titan stage Il ignition up through geosynchro-
there always exists a small but finite probability of collision nous altitude, including powered and coast flight phases, while
between the launch vehicle and one or more space objectfully accommodating the trajectory variability. The miss crite-
Despite the very low probability of collision, even this small ria used in the Air Force COLA analysis were developed by
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NASA and were based on the probability analysis described irtime, the nominal launch vehicle trajectory passed a space
this report. object with less than the minimum required clearance, launch
The variability of the Cassini trajectory is typical of inter- would not be attempted at that time in the window.
planetary launches: it must link a nearly time-invariant inter- The miss distances computed by the conjunction analyzer are
planetary target (at the target planet) with a launch pad that ibased on nominal trajectories. Four factors may cause the
moving in space primarily as a result of the Earth’s rotation. actual miss distances to differ substantially from the nominal
This is achieved by varying the direction of flight as a function miss distances computed by the conjunction analyzer:
of time into the window. The initial direction of flight is called
the flight azimuth and is measured as the angle between the 1. Launch vehicle position uncertainties: Launch vehicle
direction of flight and true north. For the Cassini mission, the position errors, expressed ag3osition covariance matrices,
variable flight azimuth was implemented as follows: The Titan will generally be a function of time from liftoff.
stage O (the first stage) was designed to fly a planar trajectory 2. Space objects position uncertainties: Position errors of
of either 93 or 97 flight azimuth. The 93flight azimuth was  space objects are also given byBdosition covariance matri-
available from window opening until 80 min into the window; ces that are generally a function of time since the last tracking.
the 97 flight azimuth was allowed from 40 min into the 3. Liftofftime errors: Errors in liftoff time occur because the
window until window close, 140 min after window opening. resumption of the count at 5 min prior to liftoff is a manual
Both azimuths were available between 40 and 80 min, selectoperation and thus subject to operator reaction time. Errors in
able on launch day. Following stage 0, Titan stages 1 and niss distance are the result of performing the COLA analysis
would perform yaw steering to place the launch vehicle into thefor an assumed nominal liftoff time in the center of the tolerance
astrodynamically correct flight plane. After jettisoning the range although the actual liftoff may occur earlier or later. Thus,
Titan stage 2, the Centaur performed two planar main enging¢he launch vehicle may arrive at some point in space earlier or
burns separated by a park-orbit coast. Both burn durations anthter than nominal. With space objects traveling at rates up to
the park-orbit coast duration were a function of liftoff time. 10 km/s, these liftoff time errors can have a substantial effect on
Launch was planned to occur on the whole minute; thus, takingctual miss distances.
into account the two possible launch azimuths between 40 and 4. Trajectory generation errors: As described above, the
80 min into the 140-min launch window, there were 182 software developed by the Air Force reconstructed nominal
possible and different nominal launch trajectories for each daylaunch vehicle trajectories. Although the methodology used by
The software developed by the Air Force to perform COLA the trajectory generator is very accurate, it does introduce some
analysis for Cassini consisted of three parts: small errors into the trajectories causing them to differ slightly
from the planned trajectory.
1. Trajectory generator: For a given launch day, the trajec-
tory generator creates a matrix of state vectors that accurately, The 33 covariance matrices describing the launch vehicle
though not perfectly, describe the position and velocity of theand the space object position uncertainties just discussed are
launch vehicle as a function of launch time, time into flight, and generally based on normal distributions and this willbe assumed
launch azimuth. State vectors for each of the 182 nominathroughout this report.
trajectories required for each daily launch window are then To establish appropriate miss criteria, NASA performed a
passed on to the conjunction analyzer. probability analysis that defined the relationship of the nominal
2. Conjunction analyzer: The conjunction analyzer com- miss distance, the size of the objects, and the covariance
pares the state vectors for each of the 182 trajectories for thahatrices with the probability of collision. The miss distance
day with the trajectories of all cataloged space objects. Anyrequirement, based purely on probabilities, was then adjusted
conjunction between the launch vehicle and a space object thab account for liftoff time errors. Although there are a number
violates predetermined criteria is identified and appropriateof approaches that account for liftoff time errors, NASA
data are written to an output file that is then forwarded to theselected a sufficiently conservative but simple methodology.
postprocessor. This methodology justified omitting the small trajectory gen-
3. Postprocessor: The postprocessor manipulates the data aration errors.
the conjunction analyzer output file and generates easily read- A final step in the establishment of miss criteria was to assess
able summary charts that define unacceptable launch timeghe reduction in launch window that would be lost because of
Prior to the opening of the launch window, these charts aramiss criteria violations. A very conservative (large) miss crite-
distributed to the appropriate launch personnel. rion reduces the probability of collision but increases the
number of unacceptable conjunctions, thereby potentially pre-
NASA assumed the responsibility for specifying the criteria cluding launch during a significant portion of the launch
that were used in the conjunction analyzer. The criteria estabwindow. Other than illustrating the resultant impact on the
lished a minimum clearance that was required between th&assini mission, the subject of launch availability will not be
launch vehicle and any space object. If, for any given liftoff addressed further.
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This report describes the analysis performed to assess thie assumed that the trajectory of both the launch vehicle and the
probability of collision. Two approaches are shown with eachconjuncting space object, while in proximity, can be repre-
one requiring simplifying assumptions. The first approach issented as the motion along a straight line at a constant speed.
very intuitive and algebraically intensive. The second is math-For the purpose of this analysis, objects can be considered to be
ematically more rigorous and offers the advantage of providingin proximity if there exists a probability of collision sufficiently
an estimate of the error introduced by the simplifying assump-arge to be of concern. For all practical purposes, using the
tions. Necessary adjustments due to the lack of adequateesults derived in this report, probabilities of collision for
covariance data are also discussed. Finally, this report addressesminal separation distances greater thhid0 km are negli-
other factors that must be considered in the establishment of thgible. Approximating any trajectory as a straight line over a
final miss criteria. The application of the results derived hereindistance of=100 km from an arbitrary point along that trajec-
to the Cassini mission are described in appendix A. Thetory is reasonable, for it can be shown that
symbols used are listed in appendix B.

1. For orbiting objects, a 200-km-long trajectory segment
will deviate from a straight line tangent to the trajectory at its
Relative Motion Coordinate System midpoint by no more than 0.8 km at the ends.
2. Forthe launch vehicle, based on an analysis of the Cassini

The probability analysis described in subsequent sectiongrajectory, the maximum deviation from a 200-km-long straight
uses a relative motion coordinate system (RMCS), which is dine is 0.400 km.
reference system inertially fixed in space and defined at the
moment of closest approach of the launch vehicle to a space Likewise, the assumption of constant velocity is valid, for it
object. As will be discussed in more detail later, the selection ofcan be shown that the velocity change over the s4i9@-km
this system makes the probability of collision independent ofdistance is
thez-direction, effectively reducing a three-dimensional prob-
lem to a two-dimensional one. 1. Less than 0.35 percent for orbiting objects

In the RMCS, the-axis is in the direction of motion of one 2. Less than 1.90 percent under worst-case conditions for a
object relative to the other, theaxis passes through both launch vehicle (based on an analysis of the Cassini trajectory);
objects at the moment of closest approach, andk-gnds this worst-case velocity change occurs during Titan stage 2
completes the orthogonal system shown in figure 1. As showrburn, the first part of the trajectory; during Centaur main engine
in the figure, the origin of the system is assumed to be at thdurns, the velocity change is less than 0.75 percent; and during
center of one of the two conjuncting objects. coast phases it is less than 0.2 percent over the same distance.

To compute the probability of collision, it will be necessary
to transform the covariance matrices from inertial coordinates Assume that for a given liftoff time, the position and the
into the RMCS. The transformation can easily be derived if it velocity of the launch vehicle and the space object can be

expressed as a function of time from liftoff, referred to as
mission elapsed time (MET). Given the assumption of linear
motion at constant speed, the position vectors of the two objects

\ as a function of time are written as

Minimum
approach
distance

@O:O(bz / Riv = (all + bth)' * (alz * th~2t)l * (als " bL3t)

Rso = (82,1 + bat)i + (8,2 + baot)j + (a3 + a3tk

whereR,,, andRgg are the position vectors of the launch
vehicle and the space object in inertial coordinates atfia
andb, . are constants, amg, andk are orthogonal unit vectors
X-axis in the inertial coordinate frame.

The difference between the two vectéY®, =Rgy—R, /. is
a vector that points from the launch vehicle to the space object
and is expressed as

Z-axis

Figure 1.—Relative motion coordinate system (RMCS). AR = (Tl + Ylt)i + (T2 + V2t)j + (T3 + y3t)k @
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wheret; =a,; —a,; andy, =b,; —b, .. _ T
7 % 8, ANAYI = B =By Crucs =[M][Cinetia JIM] €)
The time derivative AR then gives the velocity of one object ) - )
with respect to the other: whereV is any vector an@ represents ax3 position covari-
ance matrix.
In practice the equations of motion will not normally be
M = (Vl)i +(y2)j +(y3)k expressed as equations of a straight line as assumed herein.
dt Instead, a numerical integrator propagates the trajectory of the

launch vehicle and the space objectin smalltime increments. At
The direction of this vector defines tlzedirection of the  gach time stepR,y» Rso andAR will be computed. The
RMCS. Note also that the relative velocity is along a fixed program will continuously monitor the separation distakRe

direction and has a constant magnitude. to determine the point at which the magnitud@@fis mini-
At the point of closest approach, the first time derivative of mum. The vectoAR at that point defines the direction of the
the magnitude oAR must be zero: RMCSy-axis. By taking the values AR at two different points
in time near the point of closest approach, one can determine
d _ the direction of the RMC&axis. From these data, the values
alARl =0 of a;, B;, andy; can be computed.

The time at which this derivative is zetg,is given by
Probability of Collision

- + +
to = (T1V1 T2Y2 T3V3) Approach 1

vZ+v3+v3

An expression for the probability of a launch vehicle colli-
Substituting this value df in equation (1) gives sion with an orbiting space object is now derived. The assump-
tions are
AR oses aproach = (T2 * Vato)i + (T2 + Vato)i * (T3 * vato)k 1. An orbiting space object on a near-collision trajectory
with the launch vehicle has been identified, and based on
nominal trajectory propagation, the miss distafddeas been
determined; both objects are finite in size.
AR gosest approach = (B1)i +(B2)i + (B3)k 2. The velocity vector of one object relative to the other is
constant (this is true if both objects move in a straight line at
where the constanf§ = T, + Y, t,. This vector defines the ~constant velocity as shown in the section Relative Motion
direction of they-axis of the RMCS. Coordinate System). _ . .
The direction of thex-axis of the RMCS is simply the ~ 3: A known position uncertainty of both objects exists
crossproduct 0AR yosest approacnd dBR)/d. The compo- relative to their nominal positions and these uncertainties are

or more simply

nents of this vector will be designateg a,, anda.. quantified by two 83 position covariance matrices.
The three orthogonal vectors defined by the comporments 4. The position errors are normally distributed; thatis, covari-
B;, andy; are used to form the matrix ance matrices are based on a normal multivariate distribution.

5. The covariance matrices are constant over the time inter-
val when the two objects are in proximity.

(o, ap agl 6. The RMCS has been defined and all relevant quantities
M = 331 Bs 835 have been transformed into the RMCS. (This can be done, for
1 v, Y3H example, by using equations (2) and (3).)

o _ Even though the objects nominally approach one another no
where it is now assumed that the rows of the matrix have beeg|oser tharH, the assumption of a position uncertainty implies
converted to unit magnitude. _ _that there exists some finite probability of collision. However,

Vectors and position covariance matrices are then easilyys will be demonstrated, the collision probability is indepen-

transformed from inertial coordinates to the RMCS as follows: gent of time and therefore of the position of the objects in the
RMCS zdirection. Furthermore, it will be shown that the

VrMmcs = [I\/I]V|nertia| (2 probability of collision does not depend on the position vari-
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ances of either object in thedirection or on any of the y
covariances that involve a component.of

To establish the foregoing conclusions, consider the two
objects as seen looking at thg-plane of the RMCS along a ,— Probability
line parallel to the-axis, as illustrated in figure 2. One of the 7 density contour
two objects (it does not matter which) is assumed centered at the
origin whereas the second object is nominally located on the
y-axis a distanckE from the first. In the-direction, the objects
are initially some distance apart. As object 2 moves with respect
to object 1, the objects will become progressively closer until —
object2isat=0, at which time the nominal separation distance

,— Nominal center of object 2

X2:¥2 | Possible

is H. As object 2 continues to move in thelirection, the I(;)fcc?ttj'zrc];fs
separation distance will again increase. of
X1, Y1 1and 2

The definition of the RMCS ensures that the velocity of
object 2 relative to object 1 be entirely in theirection, with
the velocity components in both tkeandy-directions being
zero. Thus, the projection of the two objects intoxigplane
is unaltered by the motion of object 2 relative to object 1.

To determine whether or not the objects will collide, one need
only examine the location of the objects inxlyeplane. When
referring to the location of the objects, it is understood that
reference is made to the position of just one point of each object
designated as the object’s “center” (although it need not be the
true center). Given their finite sizes, both objects will also
occupy some space surrounding the center. It is clear that a
collision will result if any part of the projection into tRg-
plane of one object overlaps any part of the projection of the
other object. To be more specific, if the two objects are located
at their nominal position, as illustrated in figure 2, no collision distribution assumption, it can be shown from refereAcieat
will result. However, there is some probability that object 1 andthe covariance matrix for the marginal distributjmx,y) is
object 2 are actually located at poirisy,, and pointss, y,, obtained from the originalX3 covariance matrix by deleting
respectively. The objects will collide if the separation betweenthe row and column corresponding to ggirection to effec-
the two points, y; andx,, y, is less than the physical size of tively remove thez-variance and the covariances involving
the objects. position uncertainties in thedirection. Thus, the marginal

The first step in the probability analysis is to determine thedistributionp,(x,y) is only a function of variances and covari-
probability that object 1 is located at an arbitrary paigt ances involvingcandy. When object 1 is located at poiqgty;,
without regard to its location in tizedirection. To this end, let  the probability density is then given py(x;,y,).
p1(x.y,2) be the three-dimensional probability density function ~ Similarly, when object 2 is located at paxy, the probabil-
associated with object 1. The functioyfx,y,2) is obtained by ity density is given byp,(xy), where the two-dimensional
using the 33 covariance matrix of object 1 transformed into the probability density of object 2 is obtained by using the three-
RMCS. The two-dimensional probability functigg(x,y) is dimensional covariance matrix for object 2 with the row and
obtained by integrating the three-dimensional probability func- column corresponding todeleted.
tion p(x,y,2) from z = —c0 t0 z = +00; Return now to figure 2 and let the center of object 1 be located

at some poink,,y,. If the center of object 2 is also located at

point x,,y;, the two objects will collide. However, given the
pl(x, Y, z) dz finite size of both objects, they will also collide if the center of

object 2 is some distance removed from object 1. In fact, there

are many points where the center of object 2 can be located such
Thisintegration can be performed under the assumptionthatthghat a collision of the two objects will result. For example,
covariance matrices are not a function of time over the periottonsider the case in which the cross-sectional area of both
of interest. objects when projected in tRg-plane is a circle, as illustrated

The functionp, (xy) is the density function associated with in figure 3. The first object is centeredkay;. If the center of
the marginal distribution g, (x,y,2). By virtue of the normal  the second object is anywhere within the dashed circle, the

_~— Nominal center of object 1

& 74 X

Figure 2.—Projection of two conjuncting objects into
X, y-plane.

Z=+o0

Pi(xy) =]

Z=-00

1Refer to Theorem 2.4.3, p. 31.

NASA/TP—1999-208852 5



Integrate probability
density function of
object 2 over region

,— Object 2
/

R* bounded by ——t
this circle — -~
\ /
7
//
\
/ \
/ Y1y \
| 1Y1 1
| ¢ |
\ /
\ /
\ /
\\ N //
Na 7,
Sl _-7 — Object 1

Figure 3.—lllustration of region R* for objects with circular
Cross sections.

two objects will collide. The two-dimensional region bounded
by the dashed circle is designafd the area of which i&".
In actuality, the cross-sectional areas presented te,the

pP=pc= pl(xl-yl) Pz(Xli yl)A*

To obtain the overall probability of collision, integrate over
all possible locations of object 1, with the resultant probability
of collision being

y1:+oc x1:+oo

Pe=J, =_°o_rxl=_°o pcdx dy

Yy =+00 _Xq =+00
Pe=A(" "

yp=—

[ P (%0 1) P2 (0, Y1)] dxdy

©)

Since the two covariance matrices are assumed to be known,
it is possible to expand the probability density functions and
explicitly perform the two integrations to arrive at a closed-
form solution for the probability of collision. This procedure is
now described.

Assume that the two-dimensional covariance matrix for
object 1 is given by

0 g2
Dl

P101V,

p107v, U
> 0
Vi B

y-plane will not be circles. Furthermore, the shape, size, and ) - o
orientation of the cross-sectional areas will generally not be?Vhereo; andv, are the 1-sigma position uncertainties along the

known. Nevertheless, there will exist for any two objects aX~ and y-directions, respectively, ang, is the correlation

regionR" such that if the center of object 2 is within that region, Petween thew andy-errors. This matrix is the originak3
a collision will result. covariance matrix for object 1 in the RMCS with the row and

Thus, given probability density when object 1 is located at column corresponding to tlzedirection deleted. Similarly, let
X1,y;, the collision probability density is

O 0% P20V, U
0 2%
(4) 202V, V3

P = p1(0, 1) [ P2(x.y)d A

be the covariance matrix for object 2. The corresponding

where the integration is carried out over the redtan probability density functions are then given by

At this point an assumption will be made to greatly simplify
the remainder of the derivation. This assumption will have the
effect of degrading the accuracy of the final result, particularly
for large values oA™. This effect will be quantified in a later
section of this report. The simplifying assumption is to let the
probability density functiop,(x,y) at an arbitrary pointy be
constant over the regid® and be equal to its value at point
X1y, that is

1

pl I ——
2101V14/1- pf

-1
2(1—p

2

; [(x/ol)z—2p1(x/01)(y/vl)+(y/v1)2]

)

xe
and

P2(%.¥) = P2(x1. 1) 1

p2 -
2T[02V2«/1—p%

{ (x/ay)? —2p2(x/02)[(y—H)/v2]+[(y—H)/v2]2}

for all pointsx,y within the regiorR". With this assumption,
given that object 1 is located>gty,, the collision probability
density given in equation (4) can be rewritten as

2
2

)

xe (1—p
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These equations assume that the distributions associated witlthere
p; andp, have means of (0,0) and ), respectively.
When these expressions for the probability density function
. . ; I o 2,2\ 22 2f 2) 22 22 22
are substituted into equation (5) and the indicated multiplica- & l—pl)clvl +ah (1—p2)02v2 +a1a2(01v2 +05V] —2p1p20102v1v2)

tion carried out, the resultant expression can then be integratei = > >
by successively applying the following integration formula (alvl +a2"2)
(ref. 2§
222 2 2.2
I l_ -
+00 —(ax2+bx+c) T (b2—4ac)/4a —on a202\'2( Dz)+alaz(°2\'1 01020102V1V2)
[.e dx = \/— e © R > 3
—00 a V1 +agvp
First the integration formula is applied to the inner integration
with respect tx, to obtain 5 a%v%(l—p%)+a1a2v]2_
(o ~ _ 2 F3:(H02) 2 2
_ v N@@y [Ty =t (bz ‘4b1b3)/4b1 O (alvl +a2v2)
Fe=A —[._ My
21\ by Jyi=— 0
where Again, applying equation (6) to the integration with respect to
y, yields
1 2_
a = A P A 1A% lagay /? /?e(lz2 ARFy) /4R,
- pfoivi ERCE
1 Making obvious substitutions and after a great deal of tedious
a = algebra, the result is
2[1-p3)o%v3 k
by = avf +apv3 Pc:A— ‘ L

2m \(0% + 0%)(\’% + V%) - (9101\’1 + F)202V2)2
by = ‘2[319101\’1)’1 +8,p202V2 (Y1~ H)]
y e—O.S{(cf +0§)/[(0f +0§)(vf +V§)-(9101V1+92°2V2)2]] H?

2
bs = ay0%Y{ +a,05(yy — H) @)

This can be simplified by defining a new covariance matrix
which is simply the sum of the two individual covariance
matrices:

This can be rewritten as

*\alaz wT[ 1= +°°|:| F1y12+F2y1+F3)|:|
2
orP \blf ijl Z:B oT pTcTVTS
2
BPrOTVT vr B

PC -

0 g2 o0 O o3 g,v,U
g ‘1 p1%1D+D 2 PzgzD
fP101v1 VI O @P202V2 v B

and substituting the new covariance terms into equation (7)

®)

2Table 15, formula 15.75, p. 98.
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any such event. In the case of rolling dice, the recipe (or
A 1 mapping) involves counting the dots facing up on the two dice.
21-[\/ o-2(v )2 (p oV )2 In this paper, the eventspace_ include_s all possibl_e t_rajectories
T/ T =TT (i.e., those related to all possible position uncertainties) of the
two objects (launch vehicle and orbiting object) associated with
2 2, 12 22 one identified near-collision trajectory. From this event space,
‘05§0T /@C’T vr) ~(erorvr) %" the actual positions of the two objects at the moment of
nominally closest approach can be extracted. For example, one
or mapping (random variable) can be defined from the event space
P to the real number line by identifying tkecoordinate (in the
P _A 1 o O /[VT(l_pT)] RMCS) of the location of object 1 at the time of closest
21 OTVT \1_ p% approach. Similarly, five more mappings can be defined for the
y- andz-coordinates of object 1 and for all three coordinates of
object 2. To distinguish between real numbers and random
variables, this section uses upper case letters for random
variables, upper case letters with arrows for vectors (or ordered
Ve = V7 1-p2 fueij)beorfs random variables, and lower case letters for real
The same six assumptions listed at the beginning of the
section Approach 1 are also made here. Let the random variable
E map a trajectory event to the ordered triple of coordinates
associated with the location in the RMCS of the center of object

PC:

One more simplification is possible by letting

Whereveqvis an equivalent position error in §adirection with
zero correlation, and the final result then becomes

oA 1 O _0_5(Hz/vz v) © 1 at the moment of nominally closest approach. Similarly, let
e the random variabl& map to the coordinates of the location of
" Bert e :

the center of object 2. TheBand F are distributed as trivariate
normal dIStrIbLStIOhS W|th means (0,0,0) andH@) and, say,
The next section will provide an alternative approach for covanancesZ and Z respectlvely.
deriving equation (9), which additionally yields a basis for In this approach the two three-dimensional random vari-
estimating the errors inherent in equation (9) because of thables are combined first and then a marginal distribution is

assumption made during its derivation. extracted. In a way similar to the earlier discussion but in
reference to all three dimensions, a collision is defined to occur
Approach 2 when the two objects are positioned such that any part of one

object occupies the same volume as any part of the other object.

This section provides another way to model the probability of In particular, the location of the two objec#dative to each
collision to utilize some of the power of a rigorous mathemati- othercompletely determines whether or not a collision occurs
cal approach and to present the basis on which to evaluate theespective of where the pair of objects is located in space.
effect of the simplifying assumption highlighted in approach 1. (Note this differs from the first approach for modeling the
In particular, for each object, a vector of three random variablegprobability of collision wherein the location of one object was
associated with they,z-coordinates of the objectinthe RMCS fixed at some (albeit arbitrary) point, the coordinates of which
will be defined. These variables are then combined and transare later used as a dummy variable of integration.) Then a three-
formed (using the eigenvalues and eigenvectors of the covaridimensional regiors can be defined based on treative
ance matrix) to produce two random variables that arepositions of the two objects at the time of nominally closest
independent and are associated with one-dimensional standaapproach such that whenever the relative positions are “near
normal distributions (with means 0 and variances 1). enough to each other” to be insi8g the two objects will

Because of the mathematical formalism used in this sectiongollide. To define the relative location of the two objects with
itis useful to review the definition of random variable and to seerespect to each other, subtract the two position vectors associ-
how the definition is applied to near-collision trajectories. ated with the two objects. Moreover, define a mapping from a
Random variable is defined (ref33)s a mapping (or function) trajectory eventto a set of three coordinatesin the RMCS of this
from an event space to a number on the number line. A classicaklative location vector by a new random variaBle F — E.
example is rolling a pair of dice where the event is the roll itselfNote that this effectively reduces the dimensionality of the
(i.e., one roll out of the event space of all possible rolls). Theproblem from six (three coordinates for each of two objects) to
random variable provides a recipe for extracting a number fromthree components of the relative position vector. Altho@h

3Definition 1, p. 53.
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maps events to a somewhat different vector space from that of

the other two random variables, its components are referred to P= _[pXY(X’ y)d A

asX,Y,Z. Note that the region of collisid® is centered at the Ro

origin of the G-space (i.e., whelft = F). In a manner similar

to the discussion in the first approach but now in three dimenwherepy.(x,y) is the probability density function associated
sions, consider a case in which both objects are spheres. Theith >~ and is given by

regionS' is also a sphere centered at the origin with a radius

equal to the sum of the radii of the two objects. Clearly, the

projection ofS into thex,y-plane is just a circle. In particular, Pyy (%) = _r

itis the regiorR" identified in the first approach but translated 2MoT VT \/1— p%

from x,,y, to the origin of theG-space. This relationship
betweerS andR" will hold no matter what the shapes of the
two objects. Call this new regidRi,, which is the same & .
but is translated to the origin 6-space. The area B isA’ x e 2(1-07)
as before.

Now, assume tha and F are independent; thatis, assume o, comparison, consider applying the simplifying assump-
that information about the location of one object does Nnotijsn taken in the first approach. Ié-space the equivalent

provide information about the location of the other object. With 455umption is that the probability density is constant over the

the independence assumption, it can be shown (fﬁha_l)G region of integratioi, centered at the origin and is equal to its
is distributed as a trivariate normal random variable with mean,gue at this origin. Substituting (0,0) foxy), the integral

(0,H,0) and covariancé(?’_) = Z_(Es) +_ZF3 . _ reduces to
Next, recall that the-direction is parallel to the relative
velocity vector of the objects; thus, the variance in the

{(XIOT)Z ~2p7 (XIOT)[(y_H)/VT]+[(y_H)/VT]2}

zdirection corresponds to delays in the arrival of or the prema- e = _I Pxy(0,0)d A

ture arrival of object telative toobject 2 at some point on the Ro

?<,y-plane passing through t_h_e origin (_)f_the_RMCS. The desire = pyy (O, O)Id A

is to determine the probability of collision irrespective of the .

time of collision (i.e., a collision occurs whether it happens Ro

early or late in the near-collision trajectory). Thus, the marginal . 1 -05 Hz/[v$(1—p$)]

Sy S

distribution of Gis taken by integrating out the random variable ] >
2ropvry1-pT

associated with movement in thdirection. The covariance of

this marginal distribution is obtained by deleting the row and

column associated with movement in thairection (ref. 13. o
Thus, using the notation given in equation (8) of the first OF Simplifying,
approach, the associated random variable is a bivariate normal

with mean (G{) and covariance matrix 5 Opa'm 1 O —O.5(H2 /ngv ) ©
ol E jp—De
% TVeqv O

s = E o% pTOTVTE
PToTVT v% g which is the same result obtained previously.

This same formula can also be reproduced without the
Note that the variances do not address liftoff time errors, Whichassumptlon that the probability density is constant in the region

will be discussed in the section Application of Results to of integration; rather, it can be assumed that
Collision Avoidance (COLA) Analysis.

The probability of collision can be found by integrating the
two-dimensional probability density function of this bivariate
normal distributiorpy(x,y), for example, over the regi@’f)
centered at the origin as noted earlier:

(@) The regiorRB is a rectangle whose sides are parallel to
the major and minor axes of the probability density contour
associated with the covariance mafix

(b) A Taylor series expansion can be performed on the
resultant expression with only the first term retained.

4Refer to Theorem 2.4.4, p. 31. In Anderson’s notation, Zatkebe the 86
covariance matrix composed B) as the upper left submatrix® in the
lower right, and two 83 zero matrices elsewhere (due to the independence

The remainder of this section is devoted to deriving a more
precise formula for the rectangular region and then approximat-

of E and F), take to be (0,0,0,04,0), and takeD to be the 86 maitrix ing the more precise formula with the first term in its Taylor
[ 1], wherel is the %3 identity matrix. expansion. A following section will examine the error resulting
°Refer to Theorem 2.4.3, p. 31. from dropping all but the first term of the Taylor expansion.
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Starting inG-space and using a standard technique (f&f. 4) translation and rotation; however, it is changed by a factor of
the random variableX andY can be transformed into two [D~0during rescaling. Thus, using the eigenvalues defined
independent standard normal random variablésand V. above, the areA” of the transformed regioR" after a little
This technique depends on several facts, one of which is thatlgebra, becomes
the covariance matrix is symmetric. Another is that for any

symmetric matrix, an orthonormal matiikexists such that A=A D'l‘

NTEN =K whereK is a diagonal matrix with elements that are .

the (real) eigenvalues (ref./®)f 3. Using the positive definite- __A

ness of the covariance matrix (ref81the eigenvalues are \)\ WA

positive (ref. 5 so their square roots are real. Thus, a real 1
diagonal matriyD can be formed, the elements of which are the =A —_—
square roots of the eigenvaluesofn particularU andV are oTvry1- p%

independent standard normal random variables if they are

defined by the transformation of variables (ret%) o _ _ .
The derivation up to now is applicable to a rediyof any

size or shape. However, the integration indicated in equation
mJD: D‘1[\|T[D(D Eou (10) (11a) is difficult to carry out analytically for an arbitrarily
B/H %(Er H"% shaped region. To enable the evaluation of the integral, the
above derivation is now applied to a rectangular-shaped region
whereN is an orthonormal matrix with columns that are the centered at the origin of th@-space in the RMCS with sides
normalized eigenvectors &f andD is a diagonal matrix with ~ parallel to the major and minor axes of the elliptical density
elements that are the square roots of the corresponding eigeontours associated with the covariance matrix, as illustrated in
values. The variabldd andV resulting from this transforma- ~ figure 4.
tion are dimensionless. Using this transformation, the probability Here,8 is the angle of orientation of both the rectangle and
of collision becomes the elliptical density contour with respect to #axis. In the
following, it is assumed that#4 <8< 174;L" is the length of

_ the sides of the rectangulﬁfk0 which are oriented in the
P= J-,pU (Wpy (v)dudv (113) direction ofg; andW' is the length of the other sides. Note that
R L" may or may not be larger th .
where
1 o502
u=——¢e 11b
Py (u) Tom (11b) y
) Probability
py(v) = ; g 05 (11c) density contour —,
V21 /
andR’ is the region obtained by translating the regﬁ*arby
(0,-H), rotating it byNT, and rescaling it bP—L. Note herethat y
the eigenvalues are given by
02+2+\/(2—2)2 22,2
T+vr £, 0T —VvT| +4pTOTVT
— 0
M = 5 (12)
1 \ l
. . . . . . . / X
Since matrix multiplication by the two-dimensional orthonor- >/
mal matrixN simply rotates a region without changing its size, - /
the areaA” of the original region is unmodified under both \N/ LR
\ ° /
"
6Section 3.1, p. 49. L
"Section 23, p. 26.

8Section 2.3, p. 14.

9o, i

Sectu_)n 26, p. 28. . | . . |
10Section 3.1, p. 49. Figure 4. —Rectangular region Rq in X, y-plane.
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Itis further assumed tha!t% > v%, in which case the follow- v
ing are true:

“HO%ine

(1) ©6defines the orientation of the major axis of the density
contour with respect to theaxis.

(2) L"is defined in directiof (i.e., parallel to the major axis
of the density contour).

(3) A, is associated with the axis of the density contour that —R Yos
lies in thed-direction (i.e., the major axis). l 4 —H(A.) ""cos8
If v% > 0% , then replace “major” with “minor” in the discus-  w+ = w*(A_)™0° Py
sion below, since the following are true: ', v
. . . . . . T | L= L*()\ )—0.5 |
(1) ©6defines the orientation of the minor axis of the density +

contour with respect to theaxis.
(2) L"is defined in directiof (i.e., parallel to the minor axis
of the density contour). Figure 5.—Rectangular region R" in u, v-plane.
(3) A, istobe associated with the axis of the density contour
that lies in theéd-direction (i.e., the minor axis), in which case
the £ in equation (12) for the eigenvalues must be replaced

with +. L'W =A
The anglé is given by the following relationship, which can ) 1
be derived from the definition of the contours of the density =A — T
function py. orvTy1-p?
2P0Vt T
tan20 = ———- 13
o2 -2 9 . LW 5
T™VT J B
orvryl-pr

Use this equation to write the eigenvalues as

Note, also, that neither the translation nor the rotatidﬁ’gof
G2 +y2 2 _2 — described above will change its dimensions, but rescaling will
T+VT ,OT —VT | 2 . . . . .
5 * V1+tan© 28 modify the dimension parallel to theaxis by the first element
of D~ and the dimension parallel to thexis by the second
element oDL. In particular,

W

2,02 42 _\2
_OT+VT 0T VT

+ (14)
2 2cos26 L L 6
= a
N (162)
Substituting the expressions for the eigenvalues given in equa-
tion (14) into the characteristic (or eigen-) equation will provide
the eigenvectors. Using the eigenvectors as the columns of the . w’
matrixN and using equation (13) along with a few trigonometric W= T (160)
identities, the matrif can be simplified to obtain A
N = @959 —sinBQ It should also be pointed outthéﬁ and \/I arethe lengths
%‘“ 6 cosB E of the semimajor and semiminor (or semiminor and semimajor)

axes of a particular probability density contour associated with
Then after translating the regi&} by (0,-H) and rotating by  the covariance matrix. Thus,L” andW" are nondimensional
NT, the rectangle will have sides parallel to th@ndv-axes. quantities, the ratios of the lengths of the sides of the rectangular
The rescaled regidR’ of lengthL” andW centered at a point regionRB to the lengths of the semimajor and semiminor axes
we shall call (u",v") is illustrated in figure 5. Note that of a probability density contour &t
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The probability of collision for this region can now be easily

found. SincéJ andV are independent and the region of integra- R, (u’ - 0_5|_') =R, (u’) _dRy (0_5|_')

tion is a rectangle whose sides are parallel tothadv-axes, du ly

the required probability is the product of two one-dimensional 1 2 R, )

probabilities. Each of these probabilities, in turn, is obtained by t—— (0.5L') +... (19b)
taking the difference of their cumulative distribution functions 2 du u’

evaluated at the upper and lower limits of the region. In

particular, Subtracting the two Taylor series gives

P=[Ry(u +05L") = Ry(u' - 05L")] w-
x[R/(v' +05W') =R, (v' ~0.5W)] @)

u'

Ry (U +05L") - Ry(uw - 05L") = %

whereR,(u) andR,(v) are the one-dimensional cumulative Proceeding in a similar way for the second multiplicand, drop-
distribution functions for the standard normal distribution Ping higher order terms, and substituting into equation (17)
given by provides

d

Ry() = [ pulv)ay P~k

au)?%v:v, g""') (20)

\"
R/(v) = _[_m pv (v)dy 18) or
P=L'Wpy(u)py(v)

wherep, andp,, are the one-dimensional standard normal
density functions defined in equations (11b) and (11c). since the derivative of the cumulative distribution function is

Noting that commercial software is available for quickly justthe probability density function (ref3)This is the same
calculating the one-dimensional cumulative distribution func- result one would obtain by integrating the probability density
tion for a standard normal distribution and that the simplifying functionsp, andp,, over the rectangl®” and by assuming that
assumption highlighted in the first approach was not taken tdhe probability density functions are constant at their value at
derive this formula for the probability of collision, it might U’,v’, which is consistent with the assumption made in the first
seem desirable to use this formula directly. However, recall thagpproach.
this formula is only good for the particular circumstance in  Substituting u” and v" into the probability density functions
which the regiorR}, is a rectangle with sides parallel to the given by equations (11b) and (11c) and using the relationship
major and minor axes of the probability contours associatedoetweerL’W andL*W of equation (15)
with Z.

In the final portion of this section, the first term of the Taylor LW 1 _0_5(u,2+v,2)
expansion of the formula fé given in equation (17) will be P=———F———e¢ (21
examined and rewritten to obtain again the formula derived in orvryl- p% 2m
the first approach (eq. (9)) for calculating the probability of
coIIision. In the next section, the remainder term of the Taylornext, u” and v are replaced by the components of the original
expansion will be used to compare these two approaches.  covariance matrig. To find (u’, v') using the transformation

Consider the first multiplicand in equation (17). Expanding of variables from th,Y-space to thé) V-space given earlier
Py in a Taylor series about the point u” and evaluating atpy equation (10), translate the center of the reBjp(i.e., the

u +0.8"and u" - 0.6 gives origin) by (0,-H), rotate byNT and rescale bp~1 to obtain

dRy (En6 0

R, (u' +05L") = R, (u) + 0.5L" no

(+050) =Ry (u)+ 4] (ost) o
=-HO' 70 (22)

2 HH oeese

LAR (O.5L')2 +... (19a)
2! du2 u A H

11Theorem 2, p. 61.
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Thus regionR, R’B, orR’. In general this error will be a function of
. the shape and orientation of the region. However, even though
2 2 >OA_sin?0+A, cos? 60 : ) i NN i
uc+ve=H - + equation (9) is valid for an arbitrarily shaped region, the error
H ALA H will be examined for the case of a rectangular reﬁf@mith
sides parallel to the major and minor axes of the probability

Using equation (14) for the eigenvalues, the numeratorcontours. In_parti_cular, the more precise_ formula of equa-
reduces, after some algebra, to simply Substituting in the 10D (17) derived in approach 2 is approximated by a Taylor

original expressions for the eigenvalues, equation (12), in th&€Xxpansion, and the remainder terms are examined._The*remain-
denominator, after a little more algebra, gives der terms are shown to depend on the Aredthe regiong|,

orR.
U2 +y2 = H? The more precise formula derived in approach 2 is
T2 2
VT‘:L_ PTi
P=[Ry(u +05L") = Ry(u' - 05L)]
Finally, substituting the above into equation (21) gives % [R/(V' + 0.5W’) _ PV(V' _ 0.5W')] 7

LW 1 osk?[viiet]

P= — where, from equations (16) and (22),
”1_ 2 2T[
OTVTy1l=PT
. 2/ 2 u’=—HS1L9; v’=—H—C§; L’=—“L; W’=—W
0N [0 1 O 08(H?/viy) e A i -

= F e
EZT TVeqv E
andH is the nominal miss distance between the orbiting space
object and the launch vehicle at the moment of closest ap-
The last term will be recognized as the valudofderived proach,L” andW are the lengths of the rectangular redign
previously, leading to the conclusion that and P,(u) andP,(v) are the one-dimensional cumulative
distribution functions for the standard normal distribution
x given in equation (18).
P=R. = UA Dg;ge_odk'z/"a) (23) As before, consider a series representation of the first multi-
%EmTveqv u plicand in the formula above, but this time focus on the higher
order terms. First, expandirig, in a Taylor series about the

Thus,P, is the first term of the Taylor series expansion of the POt U and evaluating at'w- 0.9." and i - 0.3." gives (as
more precise formula given in equation (17) when applied to &2€fore in equation (19))
rectangular regioﬁ(’a.

As d_e_monstra'Fe_d in this a_nd in tr_\e previous section, _the (u' +0_5|_r) = FIJ(U')
probability of collision shown in equations (9) and (23) applies

to either (1) an arbitrarily shaped region of a#éaprovided + dR, (0 5L') +£ dZRJ (0 5L')2 +Ry
that one can assume tgis constant over the regi@, or (2) uly 2 qu? | Y *
a rectangular region of ar@é with its sides aligned with the

major and minor axes of the error ellipsoids, provided that one

can assume that the higher order terms of the Taylor expansiorliIJ (u' _ O.5L') =R, (u’)

are negligible. The next section evaluates the higher order

terms of the Taylor series expansion to arrive at an estimate of _dRy (O 5L') N 1 sztJ (0 5L')2 .
the error introduced in the equation Ryrby the simplifying uly ' du? . ' 3=

assumptions made in approaches 1 and 2.

where using Lagrange’s form of the remainder (réf gives

Accuracy of Probability Equation

(05L)%, forsomeli O u'<@i<u +05L’

3
This section provides information to clarify the magnitude R;, = 1 d 33)
of the error associated with neglecting the higher order terms of 3 d°u
the Taylor series expansion. This error is the same as that which

results from assuming a constant probability density over the

12Table 20, formulas 20.1 and 20.2, p. 110.
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3
Re_ = -é d 3FU (0.5L")%, for somell O u' -05L' <li<u

u |~
u

Subtracting the two truncated Taylor series gives

-4 -3 =2

T ! I I d R.J 1

Ry(u'+05L") =Ry (u —o.5|_):d— (L) +Ry
ufy
WhereRU_ =R3,—Ry.. _
To estimate the remainder teRy), note that
-05+
< +|R3-

|PU| |R3+| |R3 | Figure 6.—Third derivative of standard normal cumulative

distribution function, Pyj.
< % M, (0.5L')° +% M_(0.5L")°

LS (D
1

3
|Ru|= 24/ L (24)

whereM, andM_ are defined such that

The same procedure can be carried out for the second multipli-

3
d F;J <M, OuOu<usu +05L cand in equation (17) to obtain
du
d
3 v'+05W')-R/(V' -05W')=— (W')+
ddF;,J <M. Ou Ou-05L"susu R/( ) R/( ) dv \,,( ) Ry
u
where
To estimateM, andM_, recall that the derivative &, is the
robability density functiom,. Thus,
p y density m, R |1 w3 (25)
2421
2
d” R, = dpy Substituting into equation (17) produces
du? du

T 0
,L'+P‘J%d3/ Wy

(dR,

E du

du3 \f2T[ :EURJ D:UR/ D 'Wl

H du |y % dv |, H_
The third derivative is shown in figure 6. Note that the dR,| O (dR,

maximum of the absolute value of the third derivativépf Hav ERJW' "Hau

occurs at u = 0 and has a value af)(2-5 or 0.399. Using this v

conservative value favl, andM_ will be sufficient for the

d|,s<_:u55|on here. (If the e_ntlre interval of Iengt_h:entered at  This equation can be reduced to

u” lies more than four units away from the origin, the values of

M, andM_ and the error terms become very much smaller.) P=p.+R
Substituting (2)~0-°for M, andM_ gives e

RL+RR,

u'

14 NASA/TP—1999-208852



by recognizing that the first termHg from equations (20) and  or
(23), whereR; consists of the three remainder terms and can be

bounded for any u’, vl_,' andW by noting that . . .
1A 002 W20 @ OAD

ldRy|_ AR/ IRr|s—— e (31)
< Ou, 26 o o
aul® \211 dv | uv (26) 48 A% Hh, A H 1152Ha°H
Then Equation (31) provides an upper bound for the absolute value

of the error produced by any one of the following:

el < 2R ﬁwuvvw

CdR, ‘ |Rv|||-| + |pU ||Rv| (1) Truncating the Taylor series expansion of equation (17)
Edu u’ (2) Assuming a constant probability densgyp,, whose
value is taken at the centerif(see eq. (20))

< L 1% L 3w + L 1 w3 (3) Assuming a constant probability density function

N 2T 244210 V2T 2442m whose value is taken at the centeRof{see eq. (4))
+ 1% 1% L' 3wr3 In all cases, the bound is valid only when the regR)r(srRo)

24\ 2T 2421 or R are rectangular and properly aligned.

1 U U T 1 T U . - . .
= E‘[(L W)L 2+ E(L w)w? The following observations can be made regarding equation
(31) for the error terniRY|:
1 )3

* 115211(L w ) @7 (1) Allterms are functions of the ratio of the physical size of

the two colliding objects to the size of the probability density
To examine these remainder terms, note that the area of thgPntour associated with the covariance marix
probability density contour defined by (2) Forcasesinwhichthe twotermsinside the first parenthe-
ses are approximately equal, this sum could be replaced with
twiceL"W or by applying equation (30), witim@mes the ratio
[x y]z—l X_, (28) ofthe arqu* toA°, thus providing an error bound that depends
B/H only on this area ratio.
(3) The error bound is not a function of the separation
can be written as distanceéd because of the conservative assumptions made inthe
derivation of Ry| in equations (24) to (26). In particular,
eliminating the dependency &] on u” and v’ removed the
o _ dependency oHl.

AT =T A VA~ (29 (4) TermsA% andA_ (or A, if v2 > g2) are zero when the
correlationpy of the covariance matrix becomes 1.0. In this
case, the bound for the erRy becomes infinite. However, as
is shown in appendix A, for values@f < 0.95, the erroR; is

Thus,

C'w A very small.
LW =—=11— 30
o a 0

In addition, it can be shown that if the rectangular regign
. is oriented such that the long side of the rectangle is parallel to
That is,L"W is proportional to the ratio of the ar@aofthe  the minor axis of the density contour, the error bound will be
regionR’ to the area of the probability density contour defined |arger than that obtained if the long side is parallel to the major
by equation (28). Finally, substituting into equation (27), axis of the density contour. This alignment occuts' i€ W'
and\, >A_, orifL" >W" and\, <A_.
|RT < iA_(L' 24 W'Z) +i DA D3 The bound for the remainder term can be rewritten in terms
48 A° 1152 Ha% of the elements d (o7, V1, andpy) to obtain
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The areaA” needs some additional explanation. To begin

O 0 1 O with, A" is a function of the actual cross-sectional areas and the

IR, | < E—WH shape of the colliding objects as they are projected into the
x,y-plane, which in turn is a function of the actual object sizes

and their orientations relative to the RMCS reference frame. In

afz +w*2)(o$ +v$)—(ﬁ2 —w*z)\/(ai —vi)z +4pto2v? % practice, the actual object sizes are not always known and
* O e O certainly the orientations of the objects are unknown. At best,
H oV H what is known is the radar cross section of the objects and the

object type (satellite, rocket body, or debris) from which some
. Ox% O information about the object size can be deduced. However,
11521'[ FH even if the sizes and shapes of the objects in,yhalane are
T known, there remains the question of how to complitdo
shed some light on this, consider first the situation in which
both objects present a circular cross section tg,jhglane as
shown in figure 3. If the circular cross-sections are of area
A, andA, and of radius, andr,, respectively, then

* 3

Note that ifp; is 1, therv,,, = 0.

Onefinal note inthis sectlon should be made. The estimate for
the remainder term given herein can be quite conservative. A
better estimate can sometimes be obtained when the values of
u’, L, v, andW allow utilizing less conservative estimates for A= T[(I’l + r2)2

= AR 2 AR
= (VA + )

)

In these cases, the error becomes a function of the minimum

separation distands.
Similarly, if both objects project as squares with afgaand
A, and sides of length andl,, respectively, then

Discussion of Results
Using two different approaches has shown that the probabil- A = ('1 + |2)2
ity of collision of two objects is given by
= A+ A+ 2\ Ay

OA' 0 1 O -o5(H?/vZ,)

R = v © = (VA + A

For rectangles, the situation is slightly more complicated.
Consider two rectangles whose sides are parallel te #ed
5 y-axes. Leh,; anda, be the lengths of the two rectangles in the
Vequ =VTy1-pPT x-direction and, andb, be the lengths of the rectangles in the
y-direction. Further let

where

and the variables are defined as follows:

Ay = (a)(by)

vt combined position error ig-direction
o combined position error ir-direction A = (32)(b2)
pr correlation of combined covariance matrix a
A" areaofacomposite region, centered at one object such that kg =—

if center of second object is within that region, a collision by

results a
H nominal separation distance of two objects at point of ko :E

closest approach
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Then

Og +ko U
ke B2

The minimum value of the factcﬁkl + kz)/q/klkz is 2, which
is the case wheky =k,; that is, when the two rectangles have
the same aspect ratio. A special case of this is Wk, =1,

A*:A5L+A2+

(3) The termP. is a function of the combined covariance
matrix of objects 1 and 2 only.

(4) Thevalue oﬁeqvthat results in the highest probability of
collision whenH = 0 results in the lowest probability of
collision asH increases.

(5) The probability of collision falls off most rapidly with
increasingH for small values 0"7eqv

in which both rectangles are squares. When the two constants BY differentiating the expression g with respect tw,

are not equal, the above factor is mathematically unbounded. I&"d €quating the result to zero (providing
reality, assuming plausible aspect ratios, the factor can easiN/'|

become much larger than 2. Thus, for two rectangles at least,

* )2 L
is seen tha#™ is always larger than,/ A +\;‘A2) , which is

always larger than the sum of the two areas and depending on

the shapes of the two rectangles, can become quite large.

Similar calculations for other simple shapes have been made

and the resultant arééd has always been found to be equal to

or larger thar(\ﬁg + \/E)Z

Next, the expression for the probability of collision is exam-

ined in greater detail. The probability of collision is illustrated
in figure 7, which graphi&- as a function ofi using the values
A" =500 n¥, O =2km, and'eqvis represented parametrically
from 1 to 20 km.

From an examination of equation (9) and figure 7, the

following conclusions can be drawn:

(1) The value off is directly proportional tA" and is
inversely proportional tor.

(2) The value of declines monotonically with increasing
values ofH.

#0 and

# 0), it is easily seen that the maximum probability of
ﬁ_ollision occurs whew,,, = H Substitgti_ngﬁ for Vequ then
yields the maximum probability of collision:

— *
e0.5 A

2nm otH

(Pc)max (32)

Thus, itis seen that the maximum probability of collision depends
only on the values of", O, andH, whereH =v,> 0.

Returning to equation (9), H = 0, then the probability of
collision is

(PC)H:O

This equation shows that if two large objects (e4J.,is
2000 n?) are nominally on a collision coursid € 0) and the
combined one-sigma position errors in thandy-directions
are both only 0.5 km, then the probability of collision is still less
than 13 in 10 000.

Equivalent 1-sigma

1004 — position error measured in
y-direction of RMCS,
10705 Veqvs
D(.) 06 e km
= 10 \\\ -‘7:"'".‘“\—‘_-‘;?-—_ === 20
2 1007 ~ T 15
2 ~ —-
% ~ =10
o 10708 ~
E 10 \\
9 10710 N
S 11 N
z 10 N
10712 NS
T Y Y I Y S BN
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Miss distance, H, km

Figure 7.—Probability of collision P¢ versus miss distance H. Area of region R*, A*,
500 m2; 1-sigma position error measured in x-direction of RMCS, o, 2 km.
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Application of Results to Collision Avoidance (COLA) range, no launch attempt would be made at the corresponding
Analysis nominal liftoff time.

To use the probability of collision equation to perform a The preceding discussion assumes that the covariance matrices
COLA analysis, ideally this procedure would be followed: ~ for both objects are known. The next section discusses a
procedure that can be used if one or both covariance matrices
(1) Propagate the trajectories of a space object and thare not known.
launch vehicle to the point of closest approach based on an
assumed launch vehicle liftoff time. Collision Avoidance Analysis With Unknown Covariance
(2) Determine the nominal closest approach dist&hce Matrices
(3) Compute the transformation mathkto convert from
the coordinate system used for the state vector propagation into When the covariance matrix for one or both of the objects is
the RMCS. unknown, the procedure for calculating the probability of col-
(4) Determine the covariance matrices of both objects at thdision, as given in the previous section, is not possible and a
time of closest approach. different approach is suggested. This section shows that it is
(5) Transform the covariance matrices associated with botHpossible to determine a minimum miss distance which will ensure
conjuncting objects into the RMCS. that the probability of collision is less than some desired value
(6) Reduce the>3 covariance matrices tex2 covariance  regardless of the position errors or correlations of either object.
matrices by deleting the row and column corresponding to the The first step in this analysis is to solve equation (9Hfor
z-direction. yielding the following result:
(7) Add the two covariance matrices to det§rruipandveqv
(8) Compute or assume a value for the @'ely assuming ‘
some knowledge of the type of space object in close conjunc- _ ‘\“ o \U RMRcOTVeq [
: ; ; Hmin = ‘\(—2.0v )ﬂ]n -
tion with the launch vehicle. min \ eV 0
(9) Use equation (9) to compute the probability of collision.
(10) If the probability of collision is larger than some prede-
termined threshold value, launch would not be attempted at th&or any given covariance matrix, this equation gives the mini-
liftoff time assumed in step 1. mum nominal separation distartdg,, required for any speci-
fied value ofF.. If the nominal separation distance is greater
One modification to this procedure may be necessary. As waghanH, ;.. the probability of collision will be less th&p.
mentioned previously, liftoff may not occur at the exact time  Equation (33) is shown graphically in figure 8 using the
assumed in step 1 because of a tolerance that may be as largefaowing numeric values?. = 1.0<10°%, A" = 500 n#, ando;
several seconds. Any error in the liftoff time results in the parametrically from 2 to 10 km. Each curve in the figure
launch vehicle arriving at a specific point in space either earlyrepresents the variation &f.,,, as a function ob,, for a
or late. With space objects potentially traveling at a velocity of constant value ofir. Note that for a constamt; , asvy,, is
10 km/s, the actual miss distance could be substantially lesiicreased the separation distance required to maintain a prob-
than that computed in step 2. Some methods for dealing wittability of collision of B, = 1.0x107® first rises, reaches a
this problem follow: maximum, and then declines again. This maximum separation
distance is designatetj, .. and by differentiating equation (33)
(1) Reduce the miss distarideas computed in step 2 by the With respect tw, is found to be
worst-case distance that a space object could travel if launch

(33

occurred at the extreme ends of the tolerance range. For .

example, if the tolerance4® s and the maximum space object Hmax = e 03 _A

velocity is 10 km/s, reduce the computgdby 20 km. This is 2rotRe

equivalent to the approach taken for Cassini as described in

more detail in appendix A. This is the same as equation (32) @), derived earlier,

(2) Use method 1 but instead of assuming that the velocity of

Co 2 “only with the terms rearranged. The value gf that gives the
the space object is 10 km/s, assume the worst-case velocity af v\ value ofl__ is designated__ and, recalling from

the altitude of the conjunction. With this methédwould be before, is equal tol__ -
reduced by a lesser amount for conjunctions that occur at higher ’ max

altitudes.
(3) Perform a COLA analysis over small time increments 05 A
covering the entire liftoff time tolerance range. If the probabil- Vmax = Hmax =€ —21'[0T R (34)

ity criterion were to be violated at any time within the tolerance
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Figure 8.—Minimum required miss distance H. Probability of collision P¢, 1.0x107%; area of
region R*, A*, 500 m2,

Thus, ifv,, of the combined covariance matrices of objects 1 insights that can be gained by examination of that expression.
and 2 is unknown, one can assume L, = Vinax The An alternative might be to calculate the probability of collision
required minimum separation distance to ensure that the probaumerically, as alluded to near the end of the section Probabil-
ability of collision be less tha isH,,,, The computation of ity of Collision, Approach 2. Recall that equation (17) gave the
H,axStill requires knowledge of the valueayf. Under worst-  probability of collision formula that would allow the use of
case assumptions, the absolute largest separation distancemmercial software for calculating the one-dimensional cu-

required would be the value &f,, wheno; assumes its  mulative distribution function for a standard normal distribu-

smallest possible valug,,,. This value is designated: tion. It has the advantage of not requiring the simplification
highlighted in the first approach to modeling that probability of
* collision, but it does require that the regl@’b be rectangular
H =05 A (35) and oriented in the same direction as the probability density
270 yin Fe contour of the covariance matrix.

Several steps are required to use this alternative approach.
As long as the separation distance between the launch vehicl€he first is to establish the rectangle discussed immediately
and any space object is greater th#n the probability of  above. If the regioRB is not already rectangular, a rectangle
collision will always be less thd#, regardless of the values of meeting all the criteria can be formed to be large enough to
the launch vehicle or the space object covariance matrices. lencompass all the true regi*g. This would be a conservative
fact, the only time that the probability of collision will be equal approach because the probability obtained would be larger
toR.is When\)eq\,:vrm,jlxandoT =0pin- Using this procedure,  (possibly much larger) than the probability that tIle objects
the only knowledge required of the two covariance matrices isvould come close enough to be within the true reggn
the value ob,;,,. The next step is to calculate the eigenvalues using equa-

For Cassini (see appendix A for detailed description), thetion (12) or (14) and to obtain the angle of orientaflarsing

value ofg,,,;, was estimated, maximum values &f were equation (13). Then u’, L./, andW can be calculated using
computed for several classes of orbiting objects, and a criteriorquations (22) and (16). Finally, the four values of the cumula-
for P was established. Based on these values, the absolutive distribution function can be found and combined to obtain
largest required nominal separation distadCevas computed  the (conservative) probability of collision.
for each class of orbiting objects. Liftoff would not have been The authors wish to suggest an additional approach that would
attempted anytime that the COLA analysis revealed a violatiomot be burdened by the requirement of a rectangular razion

of the required miss distaneg. but would have a more involved setup and would be more com-
putationally expensive. Such an approach would require the
Alternative Approaches to Computing Probability transformation of the (now arbitrary) regiﬁﬁ, to R either

using the transformation from they-plane to theu,v-plane
The foregoing sections illustrate the usefulness of derivinggiven in equation (10) to obtain the regi®rparametrically (if
an analytical expression for the probability of collision and the RB is given explicitly or parametrically) or using the inverse of
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that transformation to obtaiR" implicitly (if R’Z) is given where

implicitly). Then, one mustintegrate (perhaps numerically) the

product of two standard normal density functions (for which /72
commercial software is available) over the redorNote that Veqv =VT1-PT
the transformation referred to herein also requires the calcula-

tion of the angl® and the eigenvalues. and the variables are defined as follows:
A area of region centered at one object such that if the
Summary of Results center of the second object is within the region, a col-

lision results
A model is presented for the determination of the probability
of collision between a launch vehicle/payload combination ando-zr,v% variances in the RMC$% andy-directions of covari-

any one of the many tracked objects orbiting the Earth. The ance matrix obtained by adding the position covari-
model was specifically developed for the Cassini mission ance matrices of the launch vehicle and orbiting object
(launched in October 1997) but is clearly applicable to other at the point of nominally closest approach and elimi-
launches. It consists of a closed-form solution that shows the nating the row and column associated with the
effect each of the independent parameters has on the probability z-direction

of collision. The model can be applied to compute the probabil-

ity of collision throughout a daily launch window and thereby p; correlation coefficient of this combineck2 covari-
afford the opportunity to avoid launching at those times within ance matrix

that window when the probability of collision is unacceptably

high. For a given maximum probability of collision and prior H nominal separation distance of two objects at the point
knowledge of the objects’ position uncertainties, only knowl- of closest approach

edge of the nominal closest approach distance is required to

make this launch/no launch decision. Further analysis allows the model to be used in cases when

Two approaches are presented for deriving this model. Onghe covariance matrices (and therefofev,, andp) are not
uses a practical engineering approach and the other, a mo@mpletely known and involves the computation of a minimum
mathematically rigorous approach. Each uses different burequired separation distance under worst-case assumptions
equivalent simplifying assumptions, presents the material fromregarding the two-position covariance matrices. This modified
different points of view, and produces the same simplified approach assures that as long as the nominal separation distance
model. Using the second approach results in the developmerns greater than the minimum required, an allowable probability
of an expression for the magnitude of the error introduced byof collision will not be exceeded.

the simplifying assumption. The application of these results to the Cassini mission is
The simplified model developed by both approaches expressegrovided in appendix A, which also discusses some other
the probability of collision as a function of factors that must be considered and addresses the impact on the

available launch window of limiting the probability of colli-
(1) A composite area related to the size of the two objects sion. Using Cassini data, an estimate of the error in this equation
(2) The position covariance matrices of both objects resulting from the simplifying assumption of both approaches
(3) The nominal separation distance measured at the point aduggests that the model is acceptable for most launches.
closest approach
Glenn Research Center
More specifically, the simplified model for the probability of National Aeronautics and Space Administration
collision is shown to be Cleveland, Ohio, April 9, 1999

OA'00 1 O -o5H?)vZ,)

P = Fe
C% TVequ

9)
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Appendix A
Application of Probability Analysis to Cassini Mission

The analysis developed in this report was applied to the Opmin = min(01)+ min(oz)
COLA analysis for the Cassini mission. Detailed descriptions
of how the miss criteria were developed and their effect on the
launch window are described. Also presented are data for ale(
identified conjunctions that violated the miss criteria for the

The best accuracy with which the position of space objects is
nown depends on several factors, including the type of orbit
the object is in and the radar cross section of the object. Air

actual day of launch. The discussion concludes with an asS€S¥orce personnel estimated that the position error for some space

ment of the accuracy .Of the probablllty anaIyS|s._ . __abjects could be as low as 200 to 300 m. Assuming that this
For the Cassini mission, accurate, reliable covariance matrices

for orbiting space objects were not available. This situationpOSItlon error was in thedirection of the RMCS frame led to

. . the conclusion that mirog) was 200 m.
required that the approach to be used for COLA analysis when To determine the smallest position error for the launch

covariance matrices are not known was that presented in the

section Collision Avoidance Analysis With Unknown Covari- vehlcle, an error analy5|s was performe_d fora typl_cal Cas_sml
. . trajectory. The analysis computed covariance matrices at fixed
ance Matrices. The launch/no launch decision was made b

comparing the nominal miss distarkleto criteria that were imes throughout the trajectory. Eigenvalues, the square root of

determined weeks before launch. If the distance from the Iauncf“vthh represents the position errors, were computed for each

: . : o %ovariance matrix and the smallest eigenvalue at each time point
vehicle to all space objects exceeded the miss criteria, the launc -
could proceed. was selected. Examination of these data revealed that the best

Asevere schedule constraint dictated that the development(ﬁosnIon aCC”ra‘;y was aghleved near the f|rst_r_na|n engine
X o . ; ~ " ~cutoff (MECO1)3of the trajectory and that the position error at
miss criteria rely heavily on making worst-case assumptions

rather than on attempting to refine the accuracy of the data use(tjlhalt point was approximately 300 m. Launch vehicle position

- errors increased steadily after achieving the minimum value and
Initially some concern was that the use of worst-case assump=

. . o eventually exceeded 1.6 km. The conservative approach, using
tions would lead to miss criteria so large that the launch - . " o

R . . .~ the minimum launch vehicle position error and assuming it to
availability would be severely impacted; therefore, to maintain

I . . be in thex-direction of the RMCS, resulted in a minJ of
launch availability, it was necessary to increase the maximum, o' < combining these two results giv of
allowed probability of collision from 1X10%to 1.0<107. It ' ’ 9 9IV&Gifh

; . L 500 m.
is safe to state however, that although the miss criteria were Selecting values of A—Prior to determining a value &

based on a probability of collision of ¥105, the numerous ; . o .
: . .. foruse inthe calculation of miss distance, all space objects were
worst-case assumptions that were made resulted in a consider- . . . e
. - divided into the following categories:
ably lower actual probability of collision.

(1) Manned objects (or objects capable of being manned)

(2) Satellites (active or decommissioned)

(3) Spent rocket bodies (including platforms)

(4) Debris

(5) Uncategorized objects or objects classified for national
security

Development of Miss Criteria

In the absence of covariance data, the miss distance was
computed by using

H =e™ 210 i Pe (35) A maximum area\; was determined for each space object

category and an additional arég was determined for the

launch vehicle. Table | shows the areas used for each object
A class. The area was taken to be the products of the two largest
(36) overall dimensions. These values are based on a limited search
of available data, and based on the perceived quality or quantity
of the data reviewed, an adjustment factor was applied to
further increase the areas.

For the portion of flight subject to the COLA analysis, the

Taunch vehicle consisted of the Titan Stage I, the Centaur, and

or

H" =0.09653
OminFc

and by adjusting the results for a number of factors, including
the worst-case liftoff time error.

Three items had to be determined to calculate the mis
distance: (1) the value of,,;,, (2) suitable values @, and (3)
the largest acceptable collision probabikty

Selecting a Yalue of i, -—To0 determine the value of;, 13This refers to the first shutdown of the Centaur main engines that were
the conservative approach was to assume that ignited and shut down twice during the Cassini launch.
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TABLE [.—MAXIMUM CROSS-SECTIONAL AREAS OF TABLE II.—REQUIRED MISS DISTANCES BASED

VARIOUS OBJECTS ONLY ON PROBABILITY CALCULATIONS
Object class Area, Object class Minimum mis{
12 distances,

Area, A, km

Manned objects 1100 Manned objects 35.9

Satellites 300 Satellites 144

Upper stages and platforms 55 Upper stages and platforms 59

Debris 10 Debris 33

A Un}c;:tegorized and/or classified objects| 300 Uncategorized and/or classified objegts  14.4

rea,

Launch vehicl& 100

2Consists of Titan stage Il, Centaur, and the spacecraft.

TABLE IV.—REQUIRED MISS DISTANCES

TABLE I.—VALUES OF A" BY OBJECT CLASS AFTER ADJUSTMENTS
Object class Aread’, Object class Final minimum
miss distances,
Manned objects 1863 km
Satellites 746 Manned objects 200
Upper stages and platforms 303 Satellites 35
Debris » ) 173 Upper stages and platforms 30
Uncategorized and/or classified objects 746 Debris 30
Uncategorized and/or classified objedts 35

the spacecraft. The respective areas are approximately 30, 35, Adjustments to minimum miss distancesSeveral adjust-

and 35 M. Even though the stages are jettisoned (Titanments were made to the computed minimum miss distances:
Stage Il first and Centaur later), thereby substantially reducing

the launch vehicle size, the area of the launch vehicle was (1) The miss distance for manned objects was increased to
conservatively taken to be 10(%rfor the entire trajectory. 200 km to be consistent with the independent safety COLA

Giventhese values 8f andA,, the composite aréé wasthen  analysis performed by the Eastern Range.

* A \2 2)Any miss distances lessthan 10 kmwere increased to 10 km.
calculated asA =(./A + . The resultant values &f ( y
are shown in tableg “AL N A2) (3) A bias of 20 km was added to all miss distances (except

) o N that for manned objects) to account for tolerances in the liftoff
Maximum allowable collision probability—If the launch time.

vehicle and a space object are on trajectories that resultin a zero

nominal miss distance, the probability of collision, using the | ifoff is nominally scheduled to occur on the whole minute.
equations derived in this report, could be as high a0  Forthe Cassini mission, this was subject to a tolerance of -1, +3

3 : i : . )
107 depending on the size of the space object. _ sec. To accommodate this tolerance, the COLA analysis was
For the Cassini mission, it was desired to limit the maximum performed for an assumed liftoff time 1 sec after the whole

probability of collision to values less than or equal te1(D". minute, which (given the tolerance) meant that actual liftoff

6 i i i i . .
A value of 1.6107 is consistent with values used in other oy|d occur2 s from the time analyzed. The aforementioned
aspects of the launch approval process. However, the impact ofias of 20 km provides a margin of safety for spacecraft
the launch window was unacceptably large in that nearly Onetraveling at a worst-case velocity of 10 km/s.

half of the launch window was lost. Since the values chosen tgpje v gives the final minimum required miss distances for

*

foro,,andA" are extremely conservative, it was decided that ihe Cassini mission and takes into account the three adjust-

! .. 5 . . .
a maximum probability of 1410~ would be acceptable. ments and rounding the results. These miss distances assure a
Computation of minimum miss distances-The miss dis-  ¢q|lision probability of less than 2x20-5, However, given the
tance was shown in equation (36) to be conservatism used throughout, the actual collision probabili-
ties are considerably less.
. A After finalizing these miss distances, the impact on launch
H = 0-09653m (36) window was evaluated. It was estimated that on average, 12 of
min

141 launch opportunities per daily launch window would be

o _ ) ) _ ~ closed because of a violation of the COLA miss criteria.
Substituting the values determined in the previous section gives

the miss distances, based purely on probability considerations
(table I1I).
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Collision Avoidance Analysis Process Collision Avoidance Analysis Results

The miss criteria described in the previous section were estab- Table V gives the COLA analysis results for the October 15,
lished and approved several weeks before launch. Several day997 launch of the Cassini spacecraft. For this day, the launch
before launch, the trajectory generation process was initiated. Theindow opened at 8:43 Greenwich mean time (G.m.t) and
full complement of 182 daily trajectories was generated forclosed at 11:03, giving a launch window duration of 140 min.
several launch days and stored in the computer system. ApproxiA/ith launch planned to occur on the whole minute, 141 launch
mately 48 and 24 hr prior to the planned launch, a COLA analysi©pportunities were provided. For the first 40 opportunities, the
was performed to identify those space objects that were modiight azimuth was 93 for the next 41 opportunities, the flight
likely to come within proximity of the launch vehicle. The Air azimuth could be either 98r 97 for 82 possible trajectories;
Force’s B1CACS then focused on these identified space objectsand for the last 60 opportunities, the flight azimuth wasBiTe
to improve the orbit prediction accuracy. actual liftoff time was 8:43:0.582, which was 0.582 sec later

Approximately 4 hr before launch, the conjunction analyzer than the targeted liftoff time but well within the tolerance.
was executed at Cheyenne Mountain Operations Center The COLA analysis identified 17 trajectories for which the
(CMOC) and simultaneously at the Naval Space Command irpreestablished miss criteria were violated. These 17 trajectories
Dahlgren, VA. The execution time of the conjunction analyzer affected 14 of 141 launch opportunities. Of the 14 launch
at CMOC was approximately 25 mtfi The conjunction ana-  opportunities affected, 3 occurred during a time in the launch
lyzer results from both organizations were compared andwindow when either a 93r 97 launch azimuth was possible.
reviewed prior to transferring them electronically to the Eastern Each of the 17 trajectories that violated the miss criterion
Range. involved only a single conjunction with an orbiting space object

The Eastern Range performed the postprocessing and indéhat exceeded the allowable probability of collision. For each
pendently performed the safety COLA. The results of theidentified conjunction, table V lists some of the data of interest,
mission assurance and safety COLA were combined and sumincluding the class of object involved, the flight azimuth, the
mary charts showing the unacceptable launch times werdime from liftoff when the conjunction would have occurred,
produced. After review and approval by the launch director, thethe predicted nominal miss distance, the flight phase, and the
charts were distributed to the appropriate launch personnedltitude.
approximately 1 hr before the opening of the launch window.

TABLE V.— COLA RESULTS FOR OCTOBER 15, 1997
[Arranged chronologically with time into launch window.]

Liftoff Object class Flight|] Mission elapsed Miss | Nominal | Phase of Altitude of | Launch vehicle
time, azimuth| time of closest| criteria,] miss flight® potential space vehicle
G.m.t. deg approach, km distance, collision, | relative velocity
S km km km/s
8:46 | Satellite 93 2250.208 35 322 4 639.2 114
8:47 | Debris 93 2221.969 30 13.6 4 5725 115
8:49 | Debris 93 2297.930 30| 177 4 813.6 113
8:54 | Debris 93 2326.872 30 133 4 970.0 11.2
9:10 | Unidentified object] 93 2194.960 35 30.6 4 697.0 114
9:29 | Satellite 93 1376.469 35 27.2 2 171.0 79
9:30 | Debris 93 2199.076 30 51 4 912.7 113
97 2198.463 8.7 4 914.7 11.3
9:38 | Classified object 93 2195.403 35 30.8 4 988.5 11.2
97 2194.295 27.0 4 989.9 11.2
9:44 | MIR Space Statio 93 1801.334 200 172.0 3 2226 95
97 1799.714 171.4 3 224.2 9.3
10:06 | Debris 97 2133.053 30 274 4 1084.5 111
10:12 | Satellite 97 1985.984 35 34.6 4 640.6 114
10:16 | Rocket body 97 1306.811 30 18.3 2 170.0 79
10:33 | Debris 97 1868.192 30 131 4 490.1 115
11:02 | Satellite 97 2065.356 35 28.3 4 1473.6 10.9

a1, Centaur first burn; 2, park orbit; 3, Centaur second burn; 4, between Centaur second main engine cutoff and space
vehicle separation.

14The conjunction analyzer was executed on a Silicon Graphics work-
station (Octane/Sl) with a 175-MHz R10000 CPU, 192-MB memory, and
13-GB hard disk.
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Figure 9.—October 15 Cassini launch window. Darkened areas represent times during which launch is not allowed
because of risk of collision with orbiting object.
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TABLE VI.— ASSUMPTIONS RELATED TO OBJECT SIZES

Object class Area of | Length of sides off Length of sides of

regionR”, | rectangular region| rectangular region

A, Ry along directio R, along direction

m given by®, given by® + 9C¢°

Y w,
m m
Manned Objects 1863 61.0 305
Satellite$ 746 38.6 19.3
Upper stages and platforms 303 24.6 12.3
Debris 173 18.6 9.3

2Includes uncategorized and classified objects.

TABLE VII.—VALUES USED TO COMPUTE THE BOUND OFfR; |

Terms related 9 Manned objecty Satellites| UPpper stages| pebris
maximum error and platforms
O, M 500 500 500 500
vV, m 35900 14 400 5900 3300
Forp=0
A, P 1.29x10° 2.07x10° 3.48x10 1.09x10
A,, P 2.50x10P 2.50x10P 25010 2.50x1C°
A%, 5.64x 10’ 2.26x10' 9.27x10° 5.18x10°
For p=0.50
A, P 1.29x10° 2.07x10° 3.49x10 1.10x10
A,, P 1.87x10° 1.87x10° 1.87x10° 1.86x10°
A%, n? 4.88x 10/ 1.96x10/ 8.03x10° 4.49x 1P
Forp=0.90
A, P 1.29x10° 2.08x10° 3.50x10 1.11x10
A,, P 4.75x10 4.75x10 4.72x10¢ 4.66x10*
A°, ¥ 2.46x 10 9.86x 10P 4.04x10° 2.26x10°
Forp =0.95
A, P 1.29x10° 2.08x10° 3.50x10 1.11x10
A,, P 2.44x10* 2.43x10* 2.42x10* 2.39x10*
A%, n? 1.76x10 7.06x10P 2.89x10° 1.62x10°
TABLE VII.—UPPER BOUNDS OF R;| FOR CASSINI
Object class p=0 p=050| p=0.90]| p=0.95
Manned objects 1.02x10° | 1.58x10° 1.24x107|3.37x107
Satellites 4.10x10° | 6.31x10° 4.95x10®| 1.35x107
Upper stages and platfornps1.65x10° | 2.55x10° 2.00x107%| 5.45%x10°®
Debris 9.68x107%° | 1.50x10° 1.18x10°%|3.23x10°®
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Of the 17 possible conjunctions identified for an October 15 correlation parametrically yields from equation (12) the values
launch, 2 occurred in park orbit, 2 occurred during the Centaurof A_ andA, shown in table VII. (Note that the in equa-
second main engine burn, and the remaining 13 occurred aftetion (12) had to be reversed becausés greater thao, as
the second Centaur main engine cutoff (MECO2) but beforediscussed in the text preceding equation (13).) Then, applying
spacecraft separation. In terms of altitude, the identified con-equation (29) gives the valuesAsf shown in table VII.
junctions occurred between 170 and 1474 km. Computation of the upper bound for jR—Substituting the

Figure 9illustrates the effect of COLA closures on the launchvalues from tables VI and VII into equation (31) gives the
window. The bar represents the entire 140-min launch window;results shown in table VIII. Note that singgs greater thaar,
the shaded areas represent lost launch opportunities due tothe minor axis of the probability contour is along the direction
potential for collision with an orbiting object. given by6. The dimension of the rectangular regR’igﬂhat is

along the direction given b§ is by definitionL". Since the
Accuracy Assessment of Cassini Probability Calculations ~ Orientation of the rectangle is unknouisi,can be taken to be
either the long or the short side of the rectangle. As an added

The miss distances established for the Cassini mission anf€asure of conservatism, the length.ofvas taken to be the
shown in table Il are based on a maximum allowable probabil-'arger of the two sides; thus, the long side of the reBipis
ity of collision of 1.0¢10°5, This section uses equation (31) to parallgl to the minor axis of the probability density contour.
address the error in that probability value. The maximum error ' NiS yields the largest value &] bound.
is a function of terms related to the covariance matrices and to All the errors shown in table VIIl are with respect to a
terms related to the object sizes. That the object sizes affect therobability of collision; of 1-_0f105- As can be seen, under
error term means that the error will be different for each objectVorst-case conditions, combining the largest space object with
class. The following sections define the values used to comput&h€ largest value of correlation and assuming that the long side
the magnitude of the bound f&]. of the reptangle is at nght angles to 'Fhe semimajor axis of the

Assumed values forl, W', and A .—Table I gives the values ~ €Tor ellipse, the error is 3-310#-. This represents approxi-
of A" for each object class. The valued bandW" are derived ~ Mately 3.4 percent of the probability of collision.

by assuming somewhat arbitrarily that= 2(W"). With this Values of the correlation of the covariance maXiixvhich
assumption, the values shown in table VI are obtained. is the sum of the two independent covariance matrices of the

Assumed values foA%, A, and A_—Recall that the value launch vehicle and the space object, are usually not expected to

of o assumed for the Cassini analysis was 500 m. Recall als®© s large as 0.95. For this reason and given the large number

from equation (34) that the value of = v, . =H. . The of conservative assumptions made in the derivation of equation
value ofH,.... is the required miss distance given in table IIl. (31) and in the computation of the values shown in table VI,

Thus, using these valuesmfandv, and treating the unknown it may be concluded that the errors in equation (9) are generally
smaller than those given in the last column of table VIII.
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Appendix B
Symbols

area of regioR" that is a function oA, A, andthe  p
shape and orientation of the two objects

Pc
area of regiolR’

Pu: Py
area ofellipse defined by equation y|z™ @Ez 1

area of object 1 projected inkg/-plane of relative
motion coordinate system (RMCS)

area of object 2 projected inky-plane of RMCS R

diagonal matrix, elements of which are square roots
of eigenvalues ot Ry

nominal separation distance between two objects aR;
point of closest approach

value ofH,, wheno; =0, t
maximum value oH,,;, for given value ob over

the range of & v, < o (The value oH,,,,, occurs
whenv,,=H

(UAY

max

minimum separation distance required to ensure thaty,v
probability of collision be less thalR. for any
given covariance matrix

u,v
length of sides of rectangular regi@’balong direc-
tion given by® w
length of sides of rectangular regignin u-direction

W

3x3 matrix that transforms from inertial coordinates to
the RMCS X,Y,Z
orthonormal matrix whose columns are the normal-
ized eigenvectors & and whose transposeis used
to rotateR, XY,z
probability of collision of an orbiting space object 6
with a launch vehicle and/or spacecraft

probability of collision of an orbiting space object
with a launch vehicle and/or spacecraft if a constant

probability density function is assumed ALA

41 N

maximum value oP for given value ob andA”

standard normal cumulative distribution functions

probability density function

collision probability density

standard normal probability density functions
region ofx,y-plane surrounding one object such that
if center of second object is within the region, a

collision will result

region RB, after translation by (OH), rotation by
NT, and rescaling bp—1

regionR’ translated to the origin

remainder term in Taylor expansion of probability
of collision formula

time

standard normal random variables obtained after
translation, rotation, and rescale of random vari-
ablesX,Y

coordinates in plane obtained after translation, rota-
tion, and rescale ofy-plane

coordinates of center of rectangular regfon

length of sides of rectangular reg’b along direc-
tion given byd + 9C°

length of sides of rectangular regignin v-direction

random variables that map trajectory event space to
X-,y-, andz-values of relative location of two objects
in RMCS

coordinates in RMCS

angle betweex-axis and semimajor (or semiminor)
axis of probability contour df, as well aorien-
tation of two sides of rectangulla’f) with respect to
X-axis

eigenvalues oE with A, the value associated with
eigenvector along direction given ByandA_ the
value associated with eigenvector along direction
given by6 + 9C°
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eqv

max

Pr
P1

P2

equivalent 1-sigma position error measured in X
y-direction of RMCS which, combined with a cor-
relation of zero, would yield same probability of
collision asv; combined withp

_ 20 min
%’eqv =vryl-pTg

value ofveqvat whichH,,;, is @ maximum

1-sigma error of relative positions of object 1 and
object 2 measured iy-direction of RMCS,

Dy =7 938 "

1-sigma position error of object 1 measured in 92
y-direction of RMCS

)7

1-sigma position error of object 2 measured in
y-direction of RMCS

correlation betweea andv
correlation betweea, andv,

correlation betweea, andv,

NASA/TP—1999-208852

2x2 covariance matrix of marginal distribution
associated with random variabkandy, variances
2 2 i
0%, V§ and correlatiop
minimum value oo

1-sigma error of relative positions of object 1 and
object 2 measured ix-direction of RMCS

— |~2 20
S’T =401 %02

1-sigma position error of object 1 measured in
x-direction of RMCS

1-sigma position error of object 2 measured in
x-direction of RMCS

transpose of a matrix

absolute value of a scalar or determinant of a matrix
reciprocal of a scalar or inverse of a matrix

such that

for all
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